

Product Data Sheet

DuPont™ AmberLite™ MB20 H/OH Ion Exchange Resin

Mixture of Gaussian, Gel, Strong Acid Cation and Strong Base Anion Exchange Resins for Industrial Demineralization Applications

Description

DuPont™ AmberLite™ MB20 H/OH Ion Exchange Resin is an equilibrated, homogeneous mixture of a dark strong acid cation and a clear strong base anion exchange resins. It is fully regenerated, ready-to-use, pre-mixed resin developed for the production of high-purity water in working and mixed bed polishing applications. The pre-mixed resin also allows for faster initial rinse-up prior to service, which minimizes rinse wastewater volume.

AmberLite $^{\text{TM}}$ MB20 H/OH is most commonly used in service deionization for a full demineralization of water when removal of silica and CO_2 is required. In most of the applications, the conductivity of the treated water is much lower than 0.1 μ S/cm and the pH is neutral. If necessary, the resin can be regenerated after exhaustion. Both components must be separated by backwashing and regenerated separately.

AmberLite™ MB20 H/OH is the reference mixed bed for service deionization. The resin mixture is prepared from high-quality components and the proprietary manufacturing process ensures consistency from batch to batch. This enables the resin to perform in a highly stable manner delivering high-quality treated water consistently in both working and polishing mixed beds. The consistency in quality combined with visible separation of cation and anion resins prior to regeneration make AmberLite™ MB20 H/OH a trusted choice for mixed bed pool systems.

Applications

- Service deionization
- · Working mixed bed on tap water in small installations
- · Mixed bed polishing on RO or demineralized water

System Designs

- Externally-regenerated mixed beds
- · Non-regenerated mixed beds

Historical Reference

AmberLite™ MB20 H/OH Ion Exchange Resin has previously been sold as AmberLite™ MB20 Ion Exchange Resin.

Typical Properties

·	Cation Resin	Anion Resin
Physical Properties		
Copolymer	Styrene-divinylbenzene	Styrene-divinylbenzene
Matrix	Gel	Gel
Туре	Strong acid cation	Strong base anion, Type
Functional Group	Sulfonic acid	Trimethylammonium
Physical Form	Dark amber, translucent,	Clear amber, translucent,
	spherical beads	spherical beads
Volume Ratio	38 – 44%	62 – 56%
Chemical Properties		
Ionic Form as Shipped	H ⁺	OH-
Particle Size §		
< 300 µm	≤ 3.0%	
Density		
Shipping Weight	710 g/L	

[§] For additional particle size information, please refer to the Particle Size Distribution Cross Reference Chart (Form No. 45-D00954-en).

Product Performance

Operating Capacity

The operating capacity of DuPont™ AmberLite™ MB20 H/OH Ion Exchange Resin can be estimated using the following formula, which gives an approximate determination of volume of water that can be treated:

$$BV = \frac{500}{TDS (meq/L)}$$
 or $\frac{gal}{ft^3} = \frac{187000}{TDS (as ppm CaCO_3)}$

where BV (Bed Volume) is the number of liters of a feedwater containing a TDS (Total Dissolved Solids) given in meq/L that can be demineralized with one liter of the resin mixture when run to exhaustion (or US gallons per cubic foot of the resin with TDS as ppm CaCO₃).

Treated Water Quality

AmberLite[™] MB20 H/OH Ion Exchange Resin provides a high-quality demineralized water with a conductivity < 0.1 µS/cm and neutral pH that will satisfy most of the cartridge and laboratory applications.

Suggested Operating Conditions

Temperature Range (H+/OH- form) ‡	5 – 60°C (41 – 140°F)
pH Range	0 – 14

[‡] Operating mixed beds at elevated temperatures, for example above 60 – 70°C (140 – 158°F), may impact the purity of the loop and resin life. Contact our technical representative for details.

For additional information regarding recommended minimum bed depth, operating conditions, and regeneration conditions for <u>mixed beds</u> (Form No. 45-D01127-en) or <u>separate beds</u> (Form No. 45-D01131-en) in water treatment, please refer to our Tech Facts.

Hydraulic Characteristics

Estimated bed expansion of the cation component (Figure 1a) and of the anion component (Figure 1b) of DuPont™ AmberLite™ MB20 H/OH Ion Exchange Resin as a function of backwash flowrate and temperature are shown.

Estimated pressure drop for AmberLite™ MB20 H/OH as a function of service flowrate and temperature is shown in Figure 2. These pressure drop expectations are valid at the start of the service run with clean water and a well-classified bed.

Figure 1a: Backwash Expansion - Cation

Temperature = $10 - 60^{\circ}\text{C} (50 - 140^{\circ}\text{F})$

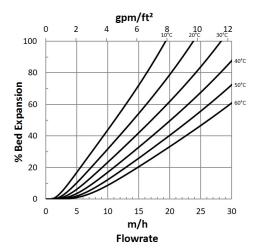
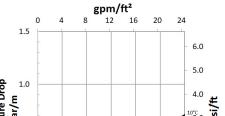



Figure 2: Pressure Drop Temperature = $10 - 60^{\circ}$ C ($50 - 140^{\circ}$ F)

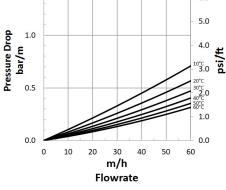
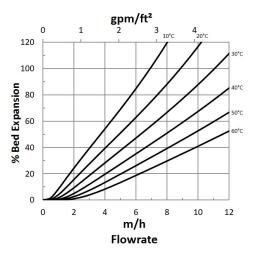



Figure 1b: Backwash Expansion - Anion

Temperature = $10 - 60^{\circ}\text{C} (50 - 140^{\circ}\text{F})$

Page 3 of 4 Form No. 45-D01257-en, Rev. 3

Product Stewardship

DuPont has a fundamental concern for all who make, distribute, and use its products, and for the environment in which we live. This concern is the basis for our product stewardship philosophy by which we assess the safety, health, and environmental information on our products and then take appropriate steps to protect employee and public health and our environment. The success of our product stewardship program rests with each and every individual involved with DuPont products—from the initial concept and research, to manufacture, use, sale, disposal, and recycle of each product.

Customer Notice

DuPont strongly encourages its customers to review both their manufacturing processes and their applications of DuPont products from the standpoint of human health and environmental quality to ensure that DuPont products are not used in ways for which they are not intended or tested. DuPont personnel are available to answer your questions and to provide reasonable technical support. DuPont product literature, including safety data sheets, should be consulted prior to use of DuPont products. Current safety data sheets are available from DuPont.

Please be aware of the following:

 WARNING: Oxidizing agents such as nitric acid attack organic ion exchange resins under certain conditions. This could lead to anything from slight resin degradation to a violent exothermic reaction (explosion). Before using strong oxidizing agents, consult sources knowledgeable in handling such materials.

Have a question? Contact us at:

www.dupont.com/water/contact-us

All information set forth herein is for informational purposes only. This information is general information and may differ from that based on actual conditions. Customer is responsible for determining whether products and the information in this document are appropriate for Customer's use and for ensuring that Customer's workplace and disposal practices are in compliance with applicable laws and other government enactments. The product shown in this literature may not be available for sale and/or available in all geographies where DuPont is represented. The claims made may not have been approved for use in all countries. Please note that physical properties may vary depending on certain conditions and while operating conditions stated in this document are intended to lengthen product lifespan and/or improve product performance, it will ultimately depend on actual circumstances and is in no event a guarantee of achieving any specific results. DuPont assumes no obligation or liability for the information in this document. References to "DuPont" or the "Company" mean the DuPont legal entity selling the products to Customer unless otherwise expressly noted. NO WARRANTIES ARE GIVEN; ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED. No freedom from infringement of any patent or trademark owned by DuPont or others is to be inferred.

© 2023 DuPont. DuPont™, the DuPont Oval Logo, and all trademarks and service marks denoted with ™, sM or ® are owned by affiliates of DuPont de Nemours Inc., unless otherwise noted.

