

Product Data Sheet

DuPont™ AmberLite™ FPA52 Ion Exchange Resins

Food Processing Grade, Macroporous, Weak Base Anion Resin

Description

DuPont™ AmberLite™ FPA52 Ion Exchange Resin is a macroporous, weak base anion resin. It has an outstanding mechanical and osmotic stability, making it suitable for the treatment of solutions with relatively high dissolved solids, such as demineralization of food solutions such as lysine, amino acids, gelatin, citrus juices, and others. Its macroporous structure facilitates the efficient uptake of strong acids (e.g. HCl and H₂SO₄) when following a strong acid cation exchanger. In addition to removing strong acids, this resin has excellent adsorption and desorption of organic matter.

Applications

- Lysine production
- Juice demineralization/deacidification
- · Gelatin demineralization
- · Amino acid recovery

Typical Properties

Physical Properties			
Copolymer	Styrene-divinylbenzene		
Matrix	Macroporous		
Туре	Weak base anion		
Functional Group	Tertiary amine		
Physical Form	Off-white, opaque, spherical beads		
Chemical Properties			
Ionic Form as Shipped	Free base (FB)		
Total Exchange Capacity	≥ 1.6 eq/L		
Weak Base Capacity	≥ 1.3 eq/L		
Water Retention Capacity	40 – 50%		
Particle Size §			
Particle Diameter, Harmonic Mean Diameter	580 – 780 μm		
Uniformity Coefficient	≤ 1.8		
< 355 μm	≤ 3.0%		
Stability			
Swelling	$FB \rightarrow HCl \le 25\%$		
Density			
Particle Density	1.05 g/mL		
Shipping Weight	660 g/L		

[§] For additional particle size information, please refer to the Particle Size Distribution Cross Reference Chart (Form No. 45-D00954-en).

Suggested Operating Conditions

Maximum Operating Temperature (FB-form)	90°C (194°F)			
Flowrates				
Service	2 – 8 BV*/h			
Backwash	See Figure 1			
Slow Rinse	Regeneration flowrate for 2 BV			
Fast Rinse (if applicable)	Service flowrate for 4 – 8 BV			
Contact Time				
Regeneration	≥ 30 – 45 minutes			
Regenerant	NaOH†	Na ₂ CO ₃	NH ₃	
Concentration	2-6%	5-8%	7%	
Level ‡	$40 - 80 \text{ kg/m}^3$	$60 - 130 \text{ kg/m}^3$	$40 - 80 \text{ kg/m}^3$	
	(2.5 - 5 lb/ft3)	$(3.8 - 8.1 \text{ lb/ft}^3)$	$(2.5 - 5 \text{ lb/ft}^3)$	

^{* 1} BV (Bed Volume) = 1 m³ solution per m³ resin or 7.5 gal per ft³ resin

Hydraulic Characteristics

Estimated bed expansion of DuPont™ AmberLite™ FPA52 Ion Exchange Resin as a function of backwash flowrate and temperature is shown in Figure 1. The flowrate necessary to achieve a desired bed expansion for other water temperatures can be calculated with the provided equations.

Estimated pressure drop for AmberLite™ FPA52 as a function of service flowrate and temperature is shown in Figure 2. These pressure drop expectations are valid at the start of the service run with clean feed.

Figure 1: Backwash Expansion

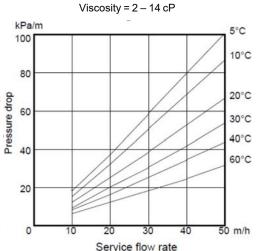
Temperature = 5 - 60°C (41 - 140°F)

5°C 10°C 20°C 30°C 40°C

150

125

100


75

25

26

Backwash flow rate

Figure 2: Pressure Drop

For other temperatures use:

 $F_T = F_{25^{\circ}C} [1 + 0.008 (1.8T_{^{\circ}C} - 45)], \text{ where } F \equiv \text{m/h}$ $F_T = F_{77^{\circ}F} [1 + 0.008 (T_{^{\circ}F} - 77)], \text{ where } F \equiv \text{gpm/ft}^2$

[†] NaOH is recommended.

[‡] Regeneration level may be lower for counter-current regeneration systems.

Product Stewardship

DuPont has a fundamental concern for all who make, distribute, and use its products, and for the environment in which we live. This concern is the basis for our product stewardship philosophy by which we assess the safety, health, and environmental information on our products and then take appropriate steps to protect employee and public health and our environment. The success of our product stewardship program rests with each and every individual involved with DuPont products—from the initial concept and research, to manufacture, use, sale, disposal, and recycle of each product.

Customer Notice

DuPont strongly encourages its customers to review both their manufacturing processes and their applications of DuPont products from the standpoint of human health and environmental quality to ensure that DuPont products are not used in ways for which they are not intended or tested. DuPont personnel are available to answer your questions and to provide reasonable technical support. DuPont product literature, including safety data sheets, should be consulted prior to use of DuPont products. Current safety data sheets are available from DuPont.

Please be aware of the following:

WARNING: Oxidizing agents such as nitric acid attack organic ion exchange resins
under certain conditions. This could lead to anything from slight resin degradation to
a violent exothermic reaction (explosion). Before using strong oxidizing agents,
consult sources knowledgeable in handling such materials.

Regulatory Note

This product may be used in applications that need to comply with relevant regulations. In support of these applications, a Regulatory Information Package is available upon request. Please address your request to your sales team or the contact details provided in this Product Data Sheet.

Have a question? Contact us at:

www.dupont.com/water/contact-us

All information set forth herein is for informational purposes only. This information is general information and may differ from that based on actual conditions. Customer is responsible for determining whether products and the information in this document are appropriate for Customer's use and for ensuring that Customer's workplace and disposal practices are in compliance with applicable laws and other government enactments. The product shown in this literature may not be available for sale and/or available in all geographies where DuPont is represented. The claims made may not have been approved for use in all countries. Please note that physical properties may vary depending on certain conditions and while operating conditions stated in this document are intended to lengthen product lifespan and/or improve product performance, it will ultimately depend on actual circumstances and is in no event a guarantee of achieving any specific results. DuPont assumes no obligation or liability for the information in this document. References to "DuPont" or the "Company" mean the DuPont legal entity selling the products to Customer unless otherwise expressly noted. NO WARRANTIES ARE GIVEN; ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED. No freedom from infringement of any patent or trademark owned by DuPont or others is to be inferred.

© 2022 DuPont. DuPont™, the DuPont Oval Logo, and all trademarks and service marks denoted with ™, sM or ® are owned by affiliates of DuPont de Nemours Inc., unless otherwise noted.

Page 3 of 3 Form No. 45-D00755-en, Rev. 3